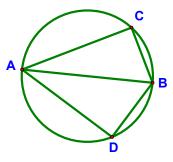

Given: $\mathbf{a} \perp \mathbf{b}$

Prove: ∠1 ≅ ∠2

Statements

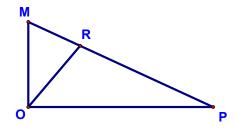

Reasons

7.

Given: $m_{\angle}ACB = 90^{\circ}$

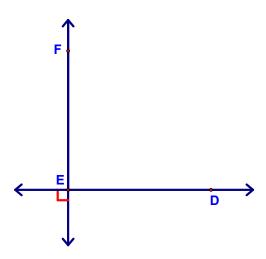
 $\overline{\textbf{AD}} \perp \overline{\textbf{BD}}$

Prove: $\angle C \cong \angle D$



Statements

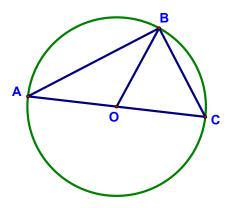
Reasons

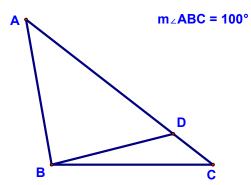

Given:
$$\angle MOR = (3x + 7)^{\circ}$$

 $\angle ROP = (4x - 1)^{\circ}$
 $\overline{MO} \perp \overline{OP}$

Which ∠ is larger, ∠MOR or ∠ROP?

12.


 $\overrightarrow{DE} \perp \overrightarrow{EF}$. The resulting \angle is trisected, then one of the new \angle s is bisected, and then one of the resulting \angle s is trisected. How large is the smallest \angle ?


Given: $\overline{AB} \perp \overline{BC}$

 $m\angle ABO = (2x + y)^{\circ}$ $m\angle OBC = (6x + 8)^{\circ}$ $m\angle AOB = (23y + 90)^{\circ}$ $m\angle BOC = (4x + 4)^{\circ}$

Find m∠ABO

If a ray, \overrightarrow{BD} , is chosen a random between the sides of $\angle ABC$, where m $\angle ABC = 100^{\circ}$,

- a. What is the probability that ∠ABD is acute?
- b. What is the probability that $\angle DBC$ is acute?
- c. What is the probability that both $\angle ABD$ and $\angle DBC$ are acute?